4.0 million gallons of water per day

are pumped to Willmar's customers. The peak daily demand for water in 2017 was 5.65 million gallons. Willmar Municipal Utilities' production capacity is 7.9 million gallons of water per day.

Making Safe Drinking Water

Your drinking water comes from a groundwater source: sixteen wells ranging from 133 to 347 feet deep, that draw water from the Quaternary Buried Artesian aguifer.

Willmar works hard to provide you with safe and reliable drinking water that meets federal and state water quality requirements. The purpose of this report is to provide you with information on your drinking water and how to protect our precious water resources.

Contact Joel Braegelman, Water & Heating Supervisor, at 320-235-4422 or jbraegelman@ wmu.willmar.mn.us if you have questions about Willmar's drinking water. You can also ask for information about how you can take part in decisions that may affect water quality.

The U.S. Environmental Protection Agency sets safe drinking water standards. These standards limit the amounts of specific contaminants allowed in drinking water. This ensures that tap water is safe to drink for most people. The U.S. Food and Drug Administration regulates the amount of certain contaminants in bottled water. Bottled water must provide the same public health protection as public tap water.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Visit our website at: <u>www.wmu.willmar.mn.us</u>

and find links to other websites with valuable information about water and its impact on our lives.

LEAD AND COPPER-Tested in customer taps

Contaminant (Date if sampled in previous year)	EPA's Action Level	EPA's Ideal Goal (MCLG)	90% of Results Were Less Than	Number of Homes with High Levels	Violation	Typical Sources
Copper (06/14/17)	90% of homes less than 1.3 ppm		0.93 ppm	1 out of 30	NO	Corrosion of household plumbing.
Lead (06/14/17)	90% of homes less than 15 ppb	0 ppb	3.1 ppb	1 out of 30	NO	Corrosion of household plumbing.

Lead in Drinking Water

You may be in contact with lead through paint, water, dust, soil, food, hobbies, or your job. Coming in contact with lead can cause serious health problems for everyone. There is no safe level of lead. Babies, children under six years, and pregnant women are at the highest risk.

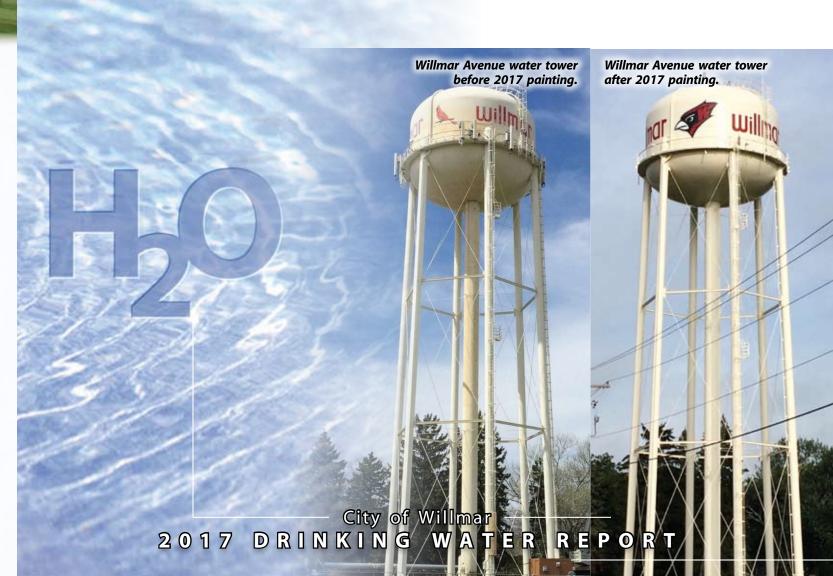
Lead is rarely in a drinking water source, but it can get in your drinking water as it passes through lead service lines and your household plumbing system. Willmar provides high quality drinking water, but it cannot control the plumbing materials used in private buildings. Read below to learn how you can protect yourself from lead in drinking water.

- 1. Let the water run for 30-60 seconds before using it for drinking or cooking if the water has not been turned on in over six hours. If you have a lead service line, you may need to let the water run longer. A service line is the underground pipe that brings water from the main water pipe under the street to your home.
 - You can find out if you have a lead service line by contacting your public water system, or you can check by following the steps at: <u>Are your pipes made of lead? Here's a quick way to find out</u> (https://www.mprnews.org/story/2016/06/24/npr-find-lead-pipes-in-your-home).
 - The only way to know if lead has been reduced by letting it run is to check with a test
 lf letting the water run does not reduce lead, consider other options to reduce your
 exposure.
- Use cold water for drinking, making food, and making baby formula. Hot water releases more lead from pipes than cold water.

- 3. Test your water. In most cases, letting the water run and using cold water for drinking and cooking should keep lead levels low in your drinking water. If you are still concerned about lead, arrange with a laboratory to test your tap water. Testing your water is important if young children or pregnant women drink your tap water.
 - Contact a Minnesota Department of Health accredited laboratory to get a sample container and instructions on how to submit a sample:
 - Environmental Laboratory Accreditation Program (https://apps.health.state.mn.us/eldo/public/accreditedlabs/labsearch.seam)
 - The Minnesota Department of Health can help you understand your test results.
- Treat your water if a test shows your water has high levels of lead after you let the water run.
 - Read about water treatment units:
 <u>Point-of-Use Water Treatment Units for Lead Reduction</u> (http://www.health.state.mn.us/divs/eh/water/factsheet/com/poulead.html)

Learn more:

Visit <u>Lead in Drinking Water</u> (http://www.health.state. mn.us/divs/eh/water/contaminants/lead.html#Protect)


Visit <u>Basic Information about Lead in Drinking Water</u> (http://www.epa.gov/safewater/lead)

Call the EPA Safe Drinking Water Hotline at 1-800-426-4791. To learn about how to reduce your contact with lead from sources other than your drinking water, visit Lead Poisoning Prevention: Common Sources (http://www.health.state.mn.us/divs/eh/lead/sources.html).

Willmar Municipal Utilities 700 Litchfield Ave. SW PO Box 937 Willmar, MN 56201 PRSRT STD US Postage PAID Willmar, MN 56201 Permit No. 484

ECR WSS

Postal Customer

CITY OF WILLMAR 2017 DRINKING WATER REPORT

This report contains important information about your drinking water. Have someone translate it for you, or speak with someone who understands it.

Información importante. Si no la entiende, haga que alguien se la traduzca ahora.

Somali

Warbixintani waxay ka kooban tahay macluumaad muhiim ah. Tarjumo ama waydii qof fahmahaya.

Willmar Monitoring Results

This report contains our monitoring results from January 1 to December 31, 2017. We work with the Minnesota Department of Health to test drinking water for more than 100 contaminants. It is not unusual to detect contaminants in small amounts. No water supply is ever completely free of contaminants. Drinking water standards protect Minnesotans from substances that may be harmful to their health.

Learn more by visiting the Minnesota Department of Health's webpage Basics of Monitoring and Testing of Drinking Water in Minnesota (http://www.health.state.mn.us/ divs/eh/water/factsheet/com/sampling.html).

How to Read the Water Quality Data Tables

The tables in this brochure show the contaminants we found last year or the most recent time we sampled for that contaminant. They also show the levels of those contaminants and the Environmental Protection Agency's limits. Substances that we tested for but did not find are not included in the tables.

We sample for some contaminants less than once a year because their levels in water are not expected to change from year to year. If we found any of these contaminants the last time we sampled for them, we included them in the tables below with the detection date.

We may have done additional monitoring for contaminants that are not included in the Safe Drinking Water Act. To request a copy of these results, call the Minnesota Department of Health at 651-201-4700 or 1-800-818-9318 between 8:00 a.m. and 4:30 p.m., Monday through Friday.

- AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
- **EPA:** Environmental Protection Agency
- MCL (Maximum contaminant level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treat-
- MCLG (Maximum contaminant level goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of
- Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our
- Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on mul-
- MRDL (Maximum residual disinfectant level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- MRDLG (Maximum residual disinfectant level goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- NA (Not applicable): Does not apply.
- NTU (Nephelometric Turbidity Units): A measure of the cloudiness of the water (turbidity).
- pCi/l (picocuries per liter): A measure of radioactivity.
- ppb (parts per billion): One part per billion in water is like one drop in one billion drops of water, or about one drop in a swimming pool. ppb is the same as micrograms per liter (µg/l).
- ppm (parts per million): One part per million is like one drop in one million drops of water, or about one cup in a swimming pool. ppm is the same as milligrams per liter (mg/l).
- **PWSID:** Public water system identification.
- TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.
- · Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

Water-saving tip: PAY ATTENTION TO THE WEATHER -

During a Minnesota summer, we may see heavy periods of rainfall followed by extended drought. Homeowners with lawns should adjust irrigation practices accordingly. This means no longer relying on the "set it and forget it" irrigation schedule that is often programmed into automatic systems. Operating irrigation controllers in manual mode is one way to solve this issue: turn the controller on only when your lawn shows signs of drought.

Learn More about Your Drinking Water

Drinking Water Sources

Minnesota's primary drinking water sources are groundwater and surface water. Groundwater is the water found in aquifers beneath the surface of the land. Groundwater supplies 75 percent of Minnesota's drinking water. Surface water is the water in lakes, rivers, and streams above the surface of the land. Surface water supplies 25 percent of Minnesota's drinking water.

Contaminants can get in drinking water sources from the natural environment and from people's daily activities. There are five main types of contaminants in drinking water sources.

- · Microbial contaminants, such as viruses, bacteria, and parasites. Sources include sewage treatment plants, septic systems, agricultural livestock operations, pets, and wildlife.
- Inorganic contaminants include salts and metals from natural sources (e.g. rock and soil), oil and gas production, mining and farming operations, urban storm water runoff, and wastewater discharges.
- Pesticides and herbicides are chemicals used to reduce or kill unwanted plants and pests. Sources include agriculture, urban storm water runoff, and commercial and residential properties.
- Organic chemical contaminants include synthetic and volatile organic compounds. Sources include industrial processes and petroleum production, gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants such as radium. thorium, and uranium isotopes come from natural sources (e.g. radon gas from soils and rock), mining operations, and oil and gas production.

The Minnesota Department of Health provides information about your drinking water source(s) in a source water assessment, including:

- · How Willmar is protecting your drinking water
- · Nearby threats to your drinking water sources;
- How easily water and pollution can move from the surface of the land into drinking water sources, based on natural geology and the way wells are constructed.

Find your source water assessment at Source Water Assessments (www.health.state.mn.us/divs/eh/water/ swp/swa/) or call 651-201-4700 or 1-800-818-9318 between 8:00 a.m. and 4:30 p.m., Monday through

Tip: LOCATE THE MASTER VALVE.

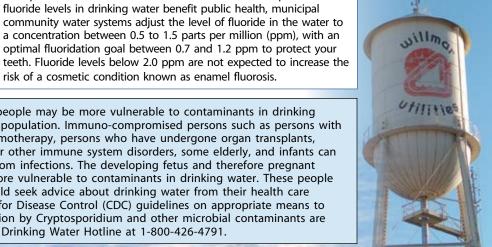
Every home, apartment service. Locate your master valve so you can find it in an emergency. Consider turning it off if you are going out of when you return.

INORGANIC & ORGANIC CONTAMINANTS-Tested in drinking water

,							
Contaminant (Date if sampled in previous year)	EPA's Limit (MCL)	EPA's Ideal Goal (MCLG)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violation	Typical Sources	
Arsenic (05/05/15)	10.40 ppb	0 ppb	1.2 ppb	N/A	NO	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.	
Barium (05/05/15)	2 ppm	2 ppm	0.33 ppm	N/A	NO	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposit.	
Nitrate	10.4 ppm	10 ppm	0.09 ppm	0.00-0.09 ppm	NO	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.	
Combined Radium (2015)	5.4 pCi/l	0 pCi/l	1.6 pCi/l	N/A	NO	Erosion of natural deposits.	

CONTAMINANTS RELATED TO DISINFECTION—Tested in drinking water

Substance (Date if sampled in previous year)	EPA's Limit (MCL or MRDL)	EPA's Ideal Goal (MCLG or MRDLG)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violation	Typical Sources
Total Trihalomethanes (TTHMs)	80 ppb	N/A	6 ppb	2.10- 6.00 ppb	NO	By-product of drinking water disinfection.
Total Haloacetic Acids (HAA)	60 ppb	N/A	3.4 ppb	3.40- 5.20 ppb	NO	By-product of drinking water disinfection.
Total Chlorine	4.0 ppm	4.0 ppm	1.29 ppm	1.15- 1.45 ppm	NO	Water additiave used to control microbes.
T						


Total HAA refers to HAAS

OTHER SUBSTANCES-Tested in drinking water

Substance (Date if sampled in previous year)	EPA's Limit (MCL)	EPA's Ideal Goal (MCLG)	Highest Average or Highest Single Test Result	Range of Detected Test Results	Violatio	n	Typical Sources	
Fluoride	4.0 ppm	4.0 ppm	0.67 ppm	0.66-0.69 ppm	NO		Erosion of natural deposits;	
Potential Hea	icable)		Water additive to promote strong teeth.					

Continued on back page

Water Tower from the past.

and business has a master valve that controls water town. That way, drips or leaks won't surprise you

PLEASE NOTE: Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. The developing fetus and therefore pregnant women may also be more vulnerable to contaminants in drinking water. These people or their caregivers should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Fluoride is nature's cavity fighter, with small amounts present

naturally in many drinking water sources. There is an overwhelming

reduces tooth decay and cavities in children and adults, even when

community water systems adjust the level of fluoride in the water to

a concentration between 0.5 to 1.5 parts per million (ppm), with an

optimal fluoridation goal between 0.7 and 1.2 ppm to protect your

there is availability of fluoride from other sources, such as fluoride

toothpaste and mouth rinses. Since studies show that optimal

risk of a cosmetic condition known as enamel fluorosis.

fluoride levels in drinking water benefit public health, municipal

weight of credible, peer-reviewed, scientific evidence that fluoridation